

AFRL-RI-RS-TR-2007-251
Final Technical Report
October 2007

FUSELET WORKFLOW INSPECTION AND
FEEDBACK

University of Tulsa

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

STINFO COPY

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

NOTICE AND SIGNATURE PAGE

Using Government drawings, specifications, or other data included in this document for
any purpose other than Government procurement does not in any way obligate the U.S.
Government. The fact that the Government formulated or supplied the drawings,
specifications, or other data does not license the holder or any other person or
corporation; or convey any rights or permission to manufacture, use, or sell any patented
invention that may relate to them.

This report was cleared for public release by the Air Force Research Laboratory Public
Affairs Office and is available to the general public, including foreign nationals. Copies
may be obtained from the Defense Technical Information Center (DTIC)
(http://www.dtic.mil).

AFRL-RI-RS-TR-2007-251 HAS BEEN REVIEWED AND IS APPROVED FOR
PUBLICATION IN ACCORDANCE WITH ASSIGNED DISTRIBUTION
STATEMENT.

FOR THE DIRECTOR:

 /s/ /s/

NORMAN AHMED JAMES W. CUSACK, Chief
Work Unit Manager Information Systems Division
 Information Directorate

This report is published in the interest of scientific and technical information exchange, and its
publication does not constitute the Government’s approval or disapproval of its ideas or findings.

http://www.dtic.mil

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection
of information, including suggestions for reducing this burden to Washington Headquarters Service, Directorate for Information Operations and Reports,
1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget,
Paperwork Reduction Project (0704-0188) Washington, DC 20503.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

DEC 2007
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

Feb 06 – Aug 07
5a. CONTRACT NUMBER

5b. GRANT NUMBER
FA8750-06-2-0059

4. TITLE AND SUBTITLE

FUSELET WORKFLOW INSPECTION AND FEEDBACK

5c. PROGRAM ELEMENT NUMBER
62702F

5d. PROJECT NUMBER
FUSE

5e. TASK NUMBER
06

6. AUTHOR(S)

Rose Gamble and Robert Baird

5f. WORK UNIT NUMBER
02

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Tulsa
600 S. College Ave.
Tulsa OK 74104-3126

8. PERFORMING ORGANIZATION
REPORT NUMBER

10. SPONSOR/MONITOR'S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AFRL/RISE
525 Brooks Rd
Rome NY 13441-4505

11. SPONSORING/MONITORING
AGENCY REPORT NUMBER
AFRL-RI-RS-TR-2007-251

12. DISTRIBUTION AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. PA# WPAFB 07-0456

13. SUPPLEMENTARY NOTES

14. ABSTRACT
The main goal of this effort is the introduction of the concept of a reconfigurable workflow of Fuselet processes into the Joint
Battlespace Infosphere (JBI). The marriage of information manipulation and Web services has the potential to increase the net-
centric capabilities of the JBI by making it easier to gain access to only needed or pre-processed information designated by a
Community of Interest (COI). This technology is especially needed to accommodate the migration of clients accessing the JBI and
the JBI itself to Web services. Coordination and orchestration of Fuselets as Web services within the current Fuselet Runtime
Environment (FRE) are fundamental to the changes needed for this migration, requiring new construction, deployment, and
management technology to be used by the Information Management Staff. The novel outcome of the research is a system design that
is poised to support dynamic reconfiguration in the form of policy changes, workflow definition updates, environmental changes,
MIO versioning, and changing Fuselet services or locations.
15. SUBJECT TERMS
Fuselets, Community of Interest (COI), Web services, Joint Battlespace Infosphere (JBI)

16. SECURITY CLASSIFICATION OF: 19a. NAME OF RESPONSIBLE PERSON
Norman Ahmed

a. REPORT
U

b. ABSTRACT
U

c. THIS PAGE
U

17. LIMITATION OF
ABSTRACT

UL

18. NUMBER
OF PAGES

44
19b. TELEPHONE NUMBER (Include area code)

N/A
 Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

 i

Table of Contents
Table of Contents..i

List of Figures ... ii

List of Tables... ii

Introduction ...1

Initial Migration of Prior Fuselets to Web Services ...2

Investigation and Survey of Workflow Engines..2

Change Planning and Control Loop (CPCL)..4
The Reconfiguration Bridge Component ..6
The Coordinator Component ..9
The Inspector Component ...12
Analysis and Planning Component ...14
Reconfiguration Planning...15

Plan Rule Formation ..17
Meta-data Specification ...19
CPCL Component Schema Definitions..20

Tasking and Control Interface Loop (TCIL) ..22
Controller Interface ..23
Reporting and Feedback...24

Workflow Controls ..25
Dynamic Goal Controls ..25
Dynamic Workflow Change Controls ...28

Jython Fuselet Wrapper..30

Example Scenarios...32
Terrorist Chemical Attack Scenario ...32
Air Base Battlefield Scenario..36

Conclusion..38

References ..38

 ii

List of Figures
Figure 1. NeWT architecture..2
Figure 2. CPCL Activity Diagram..5
Figure 3. Bridge Processing...6
Figure 4. Class Diagram for the Reconfiguration Bridge Component...7
Figure 5. Use case diagram for the Reconfiguration Bridge ...8
Figure 6. Coordinator processing..9
Figure 7. Processing paused instances ...10
Figure 8. Use Case diagram for the Coordinator Component..11
Figure 9. Class diagram for the Coordinator Component ..12
Figure 10. Use Case diagram for the Inspector Component...13
Figure 11. Class diagram of Inspector Component...13
Figure 12. Analysis and planning processing ...14
Figure 13. Use Case Diagram for the Analysis & Planning Component ...15
Figure 14. Definition Metadata (WFD-MD)..19
Figure 15. Instance Metadata (WFI-MD)..19
Figure 16. Analysis & Planning Change Request to Coordinator...20
Figure 17. Inspector Workflow Event to Analysis & Planning...21
Figure 18. Inspector Service Event Sent to Analysis & Planning ...21
Figure 19. Coordinator wfd Request for Metadata to the Inspector ..22
Figure 20. NeWT Interaction with UDDI Interface Specification...22
Figure 21. NeWT UML Diagram ...23
Figure 22. TCIL report viewer ...25
Figure 23. Goal preference entry dialog ..26
Figure 24. Goal preference table for example workflow..26
Figure 25. Workflow goal selection dialog box ...27
Figure 26. Report for goal change reconfiguration ..28
Figure 27. Workflow reconfiguration options...29
Figure 28. Workflow reconfiguration results..29
Figure 29. Fuselet Wrapper Use Case Diagram..31
Figure 30. Automated Fuselet to Web service Wrapping ..32
Figure 31. TCA process flow...34
Figure 32. Terrorist Chemical Attack - Simulation Setup ...35
Figure 33. Terrorist Chemical Attack - Simulation Map...35
Figure 34. Terrorist Chemical Attack - Simulation Web Service Test Interface...36
Figure 35. AirportTakeoff Workflow Definition ..37

List of Tables
Table 1. COTS workflow engine differences...3
Table 2. Dynamic workflow research summary ...4
Table 3. Community Goal-Preferences..17
Table 4. COI Rules for Change Actions ..18

 1

Introduction
The main goal of this effort is the introduction of the concept of a reconfigurable workflow of
Fuselet processes into the Joint Battlespace Infosphere (JBI). The marriage of information
manipulation and Web services has the potential to increase the net-centric capabilities of the JBI
by making it easier to gain access to only needed or pre-processed information designated by a
Community of Interest (COI). This technology is especially needed to accommodate the
migration of clients accessing the JBI and the JBI itself to Web services. Coordination and
orchestration of Fuselets as Web services within the current Fuselet Runtime Environment (FRE)
are fundamental to the changes needed for this migration, requiring new construction,
deployment, and management technology to be used by the Information Management Staff. The
novel outcome of the research is a system design that is poised to support dynamic
reconfiguration in the form of policy changes, workflow definition updates, environmental
changes, MIO versioning, and changing Fuselet services or locations.

In the following sections, we provide a technical discussion of the Next Generation Workflow
Toolkit (NeWT) framework. The framework we propose for NeWT encompasses two entities
that work in tandem with a commercial workflow management system. The first entity, the
Change Planning and Coordination Loop (CPCL, pronounced “capsule”), is extended by NeWT
to support the reconfiguration directives generated by the COI. The second entity within NeWT
is the Tasking and Control Interface Loop (TCIL, pronounced “tassel”), which houses the
functionality for the COI to designate overarching workflow tasks, goals and service priorities
while at the same time allowing users to generate, deploy, control, and reconfigure workflows of
WS. TCIL establishes the base from which business rules, workflow goals, and service priorities,
are encoded into a workflow definition that can be reconfigured while executing using CPCL.
The NeWT framework is shown in Figure 1. The current implementation of NeWT uses the
Oracle BPEL Process manager. BPEL is Business Process Engineering Language, a commonly
used specification language to represent workflows of WS.

NeWT uses the concept of Communities of Interest (COI) to encompass multiple businesses who
access workflows to perform known tasks regularly. COI members are related by a geographic
area, an administrative domain, or common goals. Over time, COI member interactions can be
refined to include preferences for service usage within the confines of a particular workflow.
These preferences distinguish among multiple workflows that perform the same task but relate to
a different performance goal. Priorities among competing WS may be known based on service
quality and availability. However, because a COI’s mission may be critical, redundant services
may be in place to take over when a workflow may fail at runtime. Accounting for these issues in
workflow definition and change can increase the performance of a COI with respect to
completing its task in a timely manner and with the best service usage.

 2

WFI-MD
WFD-MD

Events Actions

Events &
WFD-MD

Changes

Analysis &
Planning Bridge

Instances

Coordinator

Inspector

Build

Control Interface

COTS Workflow
Engine

WFI-MD
WFD-MD

Monitoring Infrastructure

WFD

Control
Infrastructure

Workflow
Toolkit

Tasking and Control Interface Change Planning and Coordination Workflow Execution

Results

Reporting

stakeholder

Controller
Interface

Feedback WFI-MD
WFD-MD

Events Actions

Events &
WFD-MD

Changes

Analysis &
Planning

Analysis &
Planning BridgeBridge

InstancesInstances

Coordinator

Inspector

Build

Control InterfaceControl Interface

COTS Workflow
Engine

WFI-MD
WFD-MD

Monitoring InfrastructureMonitoring Infrastructure

WFDWFD

Control
Infrastructure

Workflow
Toolkit

Tasking and Control Interface Change Planning and Coordination Workflow Execution

Results

Reporting

stakeholder

Controller
Interface

Controller
Interface

Feedback

Figure 1. NeWT architecture

Initial Migration of Prior Fuselets to Web Services

One of the early objectives of the research was to push existing fuselets into a Web service
representation and assess their deployment on the Joint Battlespace Infosphere (JBI). To address
this objective, several pre-existing component-based Fuselets were migrated to Web services.
Specifically, Fuselets were taken from the previous University of Tulsa Enemy Alert application
and manually converted for deployment into a J2EE Application Server, specifically JBoss. This
experience readied the project to begin using Web services as the main client base. As Fuselets
were deployed, metadata describing their exposed functionality was viewable via their Web
Service Definition Language (WSDL). This information was stored and retrieved using the
Universal Description, Discovery and Integration (UDDI) protocol.

Investigation and Survey of Workflow Engines

Investigation into the type and granularity of the interfaces provided by some common COTS-
based workflow engines is presented in
Table 1. Access to information may be limited to certain times, such as before or after an
instance executes. In addition, engines can vary in the versioning mechanism used for modified
WFD and their relationship to instances. From the data accumulated, we concluded that the
Oracle BPEL Process Manager is the workflow engine most adaptable for the inspection and
feedback of executing workflows within the newly devised second loop.

 3

Table 1. COTS workflow engine differences.
COTS

Workflow
Engine Versioning Deployment State Information

IBM
WebSphere
MQ Workflow

Server configuration options
determine how instances are
handled when a new WFD is
deployed, options include different
termination options such as flush or
abort.

Separated Build-time and Run-time
environments. Build-time contains
tools to convert between BPEL and
FDL (IBM specific workflow
language), Run-time will only
execute FDL files.

Workflow dashboard is available via
WebSphere Business Integration
Monitor, allows for detailed trace
information to be accessed while
instances are running, but only if
utility is installed.

Microsoft
BizTalk BPM

Version information can be included
with WFD. Instances associated
with previous WFD can be unlisted,
such that they continue to execute
and new instances are associated
with new WFD.

Publishing wizard contains
import/export wizard to assist in
BPEL standardization. Internally
WFD are stored as
"orchestrations", a proprietary
format specific to the BizTalk

Business Activity Monitoring
architecture supports inserting
"milestones" into WFD, such that
architecture can extract state
information at each defined
milestone.

Oracle BPEL
Process
Manager

Deployment process allows for the
specification of WFD version
number. If previous WFD is
overwritten, instances associated
with it abort.

Executable WFD is stored as a
BPEL document within a packaged
jar file for deployment on server.

Detailed trace and audit information
is available after instances have
been aborted. API also defines
methods to extract the last scope
an instance has entered.

Current research in dynamic changes to WS workflows is summarized in Table 2. Column 1
denotes if the workflow approach supports WS and associated standards. Column 2 states the
role of a meta-model in specifying the extent to which the system understands change
consequences. There is a difference between built-in flexibility and actual dynamism as reflected
in column 3. Column 4 designates whether a double loop separates change concerns from
workflow management. Modification to standard workflow languages, a deviation that makes
any change method difficult to use in commercial settings, is reflected in column 5. Allowable
WFD versioning and instance migration appears in columns 6 and 7 respectively. The final
columns 8 and 9 respectively indicate if an Inspector, a process who automatically monitors, and
a Coordinator, a process who analyzes and manages change, assists the workflow solution. The
research-based workflows we evaluated were Autonomic Capabilities [1], Adaptive Workflow
Management in WorkSCo [2], Dynamic Evolution using Micro-workflow language [3],
Ontology-driven Architecture [4], WebComposer [5], Worklets (YAWL) [6], OPENFlow [7],
and Dynamic Schema Change [8].

The proposed solutions in Table 2 have many positive aspects which must be present for
dynamic changes of WS in workflow. However, there are also some clear limitations. For some
it is the type or timing of allowable changes. For others, the development of an original
workflow engine prevents its widespread use. One solution only permits workflow changes
before the workflow begins execution. Another solution specifies workflows abstractly but
limits dynamism to those abstract points. Finally, support for only dynamic binding of endpoints
fosters only certain kinds of changes.

Several important points can be gleaned from the research participating in this table. First, the
workflow execution environment must be sensitive to the workflow reconfiguration process
through monitoring and maintenance actions, such as provided with a double loop approach.
Second, allowing dynamism through abstractly defined structures results in flexibility but limits
a community to specific types of change. Third, implementing rule driven decisions and policies
allows flexible change management specific to the COI and is a concise way to state COI
policies.

 4

In summary, the goals for a workable solution to dynamic workflows include:

• Limit coupling to any specific engine. Though monitoring is necessary, the monitoring

mechanism should be adaptable to different engine types.
• The solution should be flexible and adaptable to different COI with varying policies. Some

workflow solutions create a standard method of enacting change which is then applied to all
workflow changes, regardless of the environment.

• The architecture and functionality augmenting a COTS engine should not restrict the type,
structure, or timing of dynamic changes.

Adherence to a standard workflow language provides interoperability with other workflows and
workflow engines to promote scalability and adoption to commercial settings. Deviation from a
standard limits solution applicability. Therefore, we proceeded to use Oracle BPEL Process
Manager in our development.

Table 2. Dynamic workflow research summary

Name W
S

M
et

a-
m

od
el

D
yn

am
is

m

D
bl

-lo
op

La
ng

ua
ge

M
od

ifi
ca

tio
n

W
FD

Ve

rs
io

ni
ng

W
FI

M
ig

ra
tio

n

In
sp

ec
to

r

C
oo

rd
in

at
or

Autonomic Capabilities
(JOpera)

No No Yes Yes No No No No Yes

Adaptive Workf low
Management in WorkSCo

No Yes Yes No Yes Yes Yes No No

Dynamic Evolution using Micro-
w orkf low language

No Yes Yes No No Yes Yes No Yes

Ontology-driven Architecture No No No No Yes No No No Yes

WebComposer (BPEL) Yes No No No Yes No No No No

Worklets (YAWL) No No Yes Yes No No Yes ? Yes

OPENFlow No No Yes No New No Yes No No

Dynamic Schema Change No No Yes No No Yes Yes No No

Our Approach Yes Yes Yes Yes No Yes Yes Yes Yes

Supports

Change Planning and Control Loop (CPCL)

The most important expected outcome of the project was defining, specifying, and prototyping
an inspection and feedback loop for workflows of Fuselets as Web services on the JBI, and then
reconfiguring them dynamically according to predefined rules. This involved the investigation
and construction of several distinct components. We describe these components within the

 5

Change Planning and Control Loop (CPCL) that performs the inspection, feedback, and
reconfiguration of executing workflows.

Research was conducted to determine the necessary technologies that must be in place in order to
realize CPCL, as well as the specification of the meta-information that must be exchanged in
order to ensure its successful usage. Allowable changes which can trigger workflow
reconfiguration include the addition or deletion of services from the UDDI repository and the
changing of workflow definition directly. Furthermore, if the functionality of an implemented
web service changes, the workflow may need to be adjusted manually and its instances
reconfigured dynamically to incorporate these changes in a timely fashion. Information about the
structure of the workflow, such as how data is passed between the Web services, is important in
mitigating these changes. Therefore, we have researched how to extract state information from
within an executing workflow instance.

A brief overview of the processing done by CPCL is shown in Figure 2 with a UML activity
diagram illustrating the common COI changes and the triggers that can be handled by NeWT.
The labeled steps are detailed as follows:

Figure 2. CPCL Activity Diagram

1. To begin the process, either the COI or the Inspector informs Analysis & Planning that an

event has occurred within the COI.

2. Analysis & Planning receives the event and formulates an overriding change that needs to be
deployed within the WFMS. The change is directed to the Coordinator for implementation.

3. The Coordinator initially gathers meta-data from the Inspector to assist in determining the
change that will be deployed as a new WFD to the WFMS.

4. The Coordinator sends actions to the Bridge that result in the deployment of a new WFD.
The Bridge recognizes the need to migrate the corresponding WFD instances.

5. The Coordinator gathers meta-data from the Inspector to assist in the new changes that will
be associated with instance migration.

5.1 The Inspector communicates with the Bridge to gather the relevant information
required to assist the Coordinator.

6. The Coordinator sends actions to the Bridge that result in the attempted migration of
instances affected by the initial event received from the COI.

 6

In the subsequent section, we detail each component of CPCL.

The Reconfiguration Bridge Component

In the right-most panel of Figure 1 is a typical workflow management system (WFMS), such as
the commercial Oracle BPEL Process manager. The WFMS interacts with CPCL (middle panel
of Figure 1) via our Bridge component, or simply Bridge. The Bridge is used to hide engine
specific details from the double loop, making normal workflow actions uniformly available in
accordance with a specification that the double loop understands. The Bridge abstracts the
interaction with a commercial workflow engine, exposing the interfaces necessary to allow for
deployment, inspection, feedback, and the implementation of the workflow changes. It performs
its tasks in a manner that is independent of WFMS implementation. The basic functionality of
the Bridge component is illustrated below in Figure 3, where WFD stands for workflow
definition and WFI stands for workflow instance. The workflow engine is embedded within the
commercial WFMS.

Figure 3. Bridge Processing

The initial set of functions performed by the Bridge include the ability to deploy new workflows,
undeploy existing workflows, and instance management via actions such as abort, flush, migrate,
or restart. Actions such as re-deployment of a workflow definition (to update it with a newer
version) can be accomplished by deploying a workflow definition with the same name.

Many widely used WFMS support the use of the BPEL specification language to define
workflows. However, the format that these workflow engines accept the BPEL document varies
from implementation to implementation. The Bridge exposes the functionality of the WFMS

 7

engine, so that if the BPEL document needs to be compiled or packaged in a specific format it
can be done by the Bridge and not affect the remaining components of CPCL.

There are some drawbacks to the use of the Oracle BPEL Process manager. Primarily, these are
in the area of instance management. The Oracle API does not support a native method to flush or
migrate instances in an automated manner. Because the Bridge ensures the availability of these
actions, its implementation utilizes a “pause list” data structure that assists in instance
management. If a workflow may later need to be restarted or flushed, it is maintained within the
pause list.

The Bridge interacts with the CPCL components via publish and subscribe, currently utilizing
JBI message passing functions. The Bridge subscribes to a set of messages that refer to definition
or instance actions. These messages have a schema definition that exposes the functionality of
the Bridge in a simple manner. Deploying a new workflow can be accomplished by crafting a
message that is sent to the Bridge containing the new workflow. Internally, the Bridge enacts the
requested operation. When appropriate the Bridge publishes sets of meta-data back onto the JBI.
It is the responsibility of the Bridge to publish this information in a format that is understood
within CPCL.

+BridgeCallback(in JBIConnection)
+sendInstanceMetadata(in WorkflowInstance, in message)
+sendDefinitionMetaData(in WorkflowDefinition)
+sendDefinitionMetaData(in wfdName, in version)
+objectsAvailable(in InfoObject[])
+handleDefinitionAction(in InfoObject)
+getMetaData(in InfoObject, in StringTag) : string(idl)
+handleInstanceAction(in InfoObject)

BridgeConnector

+WorkflowInstance(in InstanceHandle)
+getWFI_ID() : string(idl)
+getParameters() : string(idl)
+getNormalizedMessage()
+getTrace() : string(idl)
+getWFD_ID() : string(idl)
+setWFD_ID(in parameterString)
+getOperation() : string(idl)
+setOperation(in operationString)
+getOpType() : string(idl)
+setOpType(in opTypeString)

+WFI_ID
+WFD_ID
+parameterString
+traceString
+operation
+opType

WorkflowInstance

+BridgeImplementation(in BridgeCallback)
+getPauseList() : Hashtable<String, WorkflowInstance>
+checkUndeployWorkflow(in wfdName, in StringVersion)
+unDeployWorkflow(in wfdName, in StringVersion)
+deployWorkflow(in WorkflowDefinition)
+packForDeployment(in File) : string(idl)
+sendToWorkflowEngine(in WorkflowDefinition)
+checkExists(in wfdName, in StringVersion) : boolean(idl)
+abort(in wfiID)
+flush(in wfiID, in PartialWorkflowDefinition, in opName, in opType, in InputString)
+migrate(in wfiID, in WorkflowDefinitionPrime, in opName, in opType, in InputString)
+restart(in wfiID, in wfdID, in StringInput, in opName, in opType)
+invokeInstance(in wfdID, in opName, in opType, in StringInput)

-Connector : BridgeConnector
-Hashtable<String, WorkflowInstance> getPauseList()

BridgeImplementation

+Run()
+Execute()
+sendMetadata(in message)

Instance

+Run()
+setWfdProcessing(in booleanValue)

ThreadJoin

+WorkflowDefinition(in InfoObject)
+initialize()
+deleteDirectory(in File)
+extractFilename(in metadata)
+getElementTextByName(in element, in xml) : string(idl)
+getName()
+getVersion()
+getSpecification()
+getWSDLs()
+getAuthor()

WorkflowDefinition

Figure 4. Class Diagram for the Reconfiguration Bridge Component

 8

Figure 4 is a class diagram of the Bridge. The Bridge is composed of a BridgeConnector class
which subscribes to definition and instance action messages published by the Coordinator. The
WorkflowDefinition and WorkflowInstance classes manage metadata about the deployed
workflows and executing instances on the WFMS engine. These classes are tightly coupled to
the CPCL process but lack WFMS engine-specific implementation details.

The Bridge makes use of the Oracle BPEL Process Manager API Specification, Java
implementation, to make specific calls to the workflow engine. The API is made available from
Oracle and available via several Java jar files packaged with the workflow engine. The Bridge
primarily uses the API classes IDeliveryService, IBPELProcessHandle, and IInstanceHandle for
communication with the workflow engine. The current Bridge implementation uses the API
specification v10.1.2.0.2, upgrades to later version of the workflow engine should be simple due
to the API usage.

Therefore, the Bridge the following classes are coded. The BridgeImplementation class performs
the processing required to perform actions such as definition and instance management. The
ThreadJoin and Instance classes manage important execution thread processing to enable the
Bridge to continue processing while waiting for a reply from the commercial WFMS.

Testing has shown the Bridge capable of workflow deployment, undeployment, and invocation
actions as well as workflow instance actions to abort, restart, migrate, and flush stale instances.

Figure 5. Use case diagram for the Reconfiguration Bridge

Figure 5 shows the use-case diagram for the Bridge. In addition, an instance’s state is
communicated by the Bridge publishing the instance’s execution trace, which is published to the

 9

JBI via workflow instance meta-data. Change to an existing workflow definition is accomplished
by deploying a changed workflow definition with the same original name.

The Coordinator Component

As depicted below, the Coordinator accepts a workflow definition (or a modified workflow as a
re-definition), analyzes the definition metadata, and deploys new or changed workflows onto the
engine via Bridge commands. As a result of workflow deployments, workflow instances are
suspended. The Coordinator evaluates the workflow definition and instance metadata obtained
from the Inspector (described in more detail in the next section) for each workflow instance
affected and determines the appropriate action. These instances are managed through instance
actions sent to the Bridge.

Implementation and testing of the Coordinator prototype revealed that performance of the
process path that manages suspended workflow instances is crucial. Poor performance of this
path will result in a degradation of performance for all COI workflows. It was imperative that the
Coordinator not become the bottleneck. Thus, more processing related determining the
appropriate reconfiguration directives became the responsibility of the Analysis & Planning
component (described later in more detail). Figure 6 displays an overview of the processing
performed by the Coordinator component.

Denotes a performance critical path

B
R
I
D
G
E

Workflow definition

& Instance metadata
INSPECTOR

Workflows Send workflow
definition commands
(deploy, undeploy)

Receive Definition &
Instance metadata

Analyze
& Process

Workflow into
bridge

commands

Reconfiguration
Directives

Send workflow Instance commands
(flush, abort, restart, migrate)

Definition
commands

Instance
Commands

ANALYSIS & PLANNING

COORDINATOR

Denotes a performance critical path

B
R
I
D
G
E

Workflow definition

& Instance metadata
INSPECTOR

Workflows Send workflow
definition commands
(deploy, undeploy)

Receive Definition &
Instance metadata

Analyze
& Process

Workflow into
bridge

commands

Reconfiguration
Directives

Send workflow Instance commands
(flush, abort, restart, migrate)

Definition
commands

Instance
Commands

ANALYSIS & PLANNING

COORDINATOR

Figure 6. Coordinator processing

The Coordinator publishes commands to the Bridge as definition actions or instance actions. The
definition actions are

• deploy a workflow,

 10

• undeploy a workflow or remove it from the engine, and
• invoke a workflow to create an executing instance.

Instance actions are those actions taken on a workflow instance that has paused due to a new
deployment of its corresponding workflow definition. When this changed workflow definition is
deployed, the Coordinator analyzes the old and new workflow definition to determine the
transition point. The transition point is the point that change in the workflow processing begins.
Trace information for all paused instances is received from the Bridge. The Coordinator
compares trace information obtained by inspecting the workflow instance up to the transition
point to determine the appropriate action to take for each suspended workflow instance. For
example, in Figure 7, Instance 1 can migrate to the new workflow definition (Workflow A′)
since its execution has not yet reached the transition point. Instance 2 has executed the transition
point and so must either flush, abort, or restart.

BPEL A
BPEL B
BPEL D

BPEL A
BPEL B
BPEL C
BPEL D

Workflow AWorkflow A Workflow AWorkflow A’’

Transition Transition
PointPoint

Instance 1
Execution Trace

BPEL A
BPEL B

Instance 2
Execution Trace

BPEL A
BPEL B
BPEL C

BPEL A
BPEL B
BPEL D

BPEL A
BPEL B
BPEL C
BPEL D

Workflow AWorkflow A Workflow AWorkflow A’’

Transition Transition
PointPoint

Instance 1
Execution Trace

BPEL A
BPEL B

Instance 2
Execution Trace

BPEL A
BPEL B
BPEL C

Figure 7. Processing paused instances

The actions that can be taken are

• flush the instance which means allow it to resume and complete processing using the
previous workflow definition,

• abort the instance which forces the requestor to re-initiate processing,
• restart the instance which involves an abort followed by an invoke, or
• migrate which utilizes instance metadata to adapt the executing instance to the new

workflow definition.
These actions are illustrated in the Coordinator Use Case diagram in Figure 8.

 11

Figure 8. Use Case diagram for the Coordinator Component

The Coordinator also publishes information to the Inspector about deployed BPEL
specifications, their supporting services, and WSDL files. This schema is illustrated in the
section covering the Inspector. The payload of this message is a zip file containing the workflow
BPEL file, the workflow WSDL document, a BPEL.XML document which binds the BPEL’s
partner links to specific WSDL documents, and the WSDL documents for the services that are
invoked from the workflow. Together these documents comprise the CPCL workflow artifacts.

The UML class diagram for the Coordinator is shown in Figure 9. The Coordinator class
subscribes and publishes to the JBI and processes incoming messages from Analysis & Planning
and the Inspector. The TraceParser class supports the analysis and processing of the workflow
instance metadata received from the Inspector. This data reports the current execution trace of an
instance. The Coordinator class must manage all the files that support processing a BPEL on the
engine as well as effecting change within a BPEL. Thus, the Storage class provides a uniform
directory structure for storing the supporting documents for each deployed BPEL including the
relevant WSDL documents for invoked services.

 12

Figure 9. Class diagram for the Coordinator Component

The Inspector Component

The Inspector gathers metadata from UDDI registries and the Bridge (for newly deployed
workflows only). From the UDDI, the Inspector retrieves the list of services that are available to
the COI along with their WSDL documents. From the Bridge, the Inspector receives the
workflow status information.

The metadata is used by the Inspector to identify the changes that the COI has dictated that it
wants. For example, if a service becomes unavailable, then instead of a resultant failure of those
workflows that rely on that service, dynamic update can performed on the executing instances to
use a predefined alternate and available service. As services become available via the UDDI
registry, the decision to utilize them is more difficult. If immediate action is taken to include a
newly available service, then instability (i.e. a service that frequently transitions between the
available and unavailable states) has the potential to create a thrashing behavior in CPCL,
through the repeated addition and removal of the service from workflows. It is apparent from
detailed analysis that the ideal solution should consider multiple Quality of Service (QoS)
parameters such as availability, length of time available, response time, and customer
preferences before modifying multiple workflows to include a newly available service.
Determining the best combination of factors can be COI specific, has garnered a great deal of
research on its own, and is beyond the scope of the current project.

After evaluating the metadata, COI preferences, and UDDI contents for change requirements, the
Inspector communicates change information to Analysis & Planning that may trigger a
Reconfiguration Directive. This allows the Inspector prototype to focus only on accumulating

 13

COI metadata and identifying changes. The Inspector functionality has been refined as shown in
the use case diagram in Figure 10.

Bridge

Receive Metadata

Store Metadata

Query UDDI

«uses»

«uses»COI
UDDI

Registries

«uses»

Report Metadata to
Coordinator

«uses»

Report Change to
Analysis & Planning

«uses»

Figure 10. Use Case diagram for the Inspector Component

The Inspector and Coordinator communicate to each other through the JBI. The Coordinator
requests information regarding the workflow instances. The Inspector receives instance trace
messages from the Bridge and stores it. When requested by the Coordinator, the Inspector
reports this trace information, when requested, to the Coordinator. The Inspector publishes
change triggers and metadata through the JBI to the Analysis & Planning component when
appropriate. Conditions, such as services that become unavailable or workflows with excessive
failures, will prompt the Inspector to alert Analysis & Planning.

+Inspector()
+sendTrace()
+traceAvailable()
+SubscribetoWFI()
+sendToCoordinator()
+SubscribeToICcomms()

-threadCounter
-JBIConnection
-conWorkCount
-Buffer

Inspector

+QueryRegistry(in RegistryLocation)
+ProcessRegistryChanges()

-ServiceRecords
UDDIQuery

+GetTrace()

-name
-data
-workflow

TraceMessage

Figure 11. Class diagram of Inspector Component

The current class structure of the Inspector is shown in Figure 11. The figure indicates the
functionality by which Inspector component queries the UDDI registry and determines changes
in service availability, receives metadata from the Bridge and sends messages to the Coordinator
via the JBI.

 14

Analysis and Planning Component

Prioritizing the set of evoked changes occurs within the Analysis & Planning component. The
Analysis & Planning component receives alerts from the Inspector when COI preferred services
become available or unavailable. Thus, this component will adapt deployed workflows to
minimize timeout errors from unavailable services and to maximize processing by utilizing
preferred services over others when preferred services are available. In addition, COI users may
request changes to a workflow through the NeWT component. NeWT then publishes change
messages to Analysis & Planning.

An important function of the Analysis & Planning component is analysis of change requests.
Since the Inspector automatically generates change requests based on service availability, it is
possible that a user change request may conflict with Inspector generated change requests. User
change requests must be given priority over auto-generated change requests in order to give users
the maximum control of their environment. However, once conflicting change requests have
been removed, the auto-generated requests designed to eliminate errors must take
implementation precedence over other requests. This is so that error elimination is given priority
over new functionality. If not, then users may request failed workflows to re-execute, creating a
backlog of repeat execution while new functionality is deployed to the engine. Control of this
processing must be data and policy driven to promote flexibility. Figure 12 illustrates the
processing performed by the Analysis & Planning component.

Figure 12. Analysis and planning processing

The Analysis & Planning component has been successfully developed to link with the
implementations of the Inspector and Coordinator components in that Analysis & Planning

COORDINATOR

Reconfiguration
Directives

Deployed
Workflows

INSPECTOR

Process
workflow

user
changes

Send deploy
command

Adapt workflows to
service availability

Prioritize
changes

Manage
conflicts

Workflow
metadata

workflow

workflow

workflow

N
e
W
T

ANALYSIS
&

PLANNING

COORDINATOR

Reconfiguration
Directives

Deployed
Workflows

INSPECTOR

Process
workflow

user
changes

Send deploy
command

Adapt workflows to
service availability

Prioritize
changes

Manage
conflicts

Workflow
metadata

workflow

workflow

workflow

N
e
W
T

ANALYSIS
&

PLANNING

 15

receives all the information needed to properly process the reconfiguration plan and create
change requests. Thus, basic change requests are sent from Analysis & Planning to the
Coordinator resulting in appropriate reconfiguration actions. The management of automated
changes using the goal preference table and dependency tables is discussed in the TCIL loop
information.

Figure 13 displays the use case diagram for the Analysis & Planning Component.

Analysis & Planning

TCIL Workflow Editor

Inspector

Deploy Workflow

Process Workflow
Event

Process Service
Event

TCIL Reporting & Feedback

Coordinator
Reconfigure

Workflow

Update Reporting
Information

Figure 13. Use Case Diagram for the Analysis & Planning Component

Reconfiguration Planning

COI policies are the foundation for workflow change decision making. There are three main
areas of metadata that help to define the COI and workflow policies. There are three main areas
of metadata that help to define the COI and workflow policies: 1) Dependencies among services
and workflows, 2) COI service preferences, and 3) functionally similar services that enable
workflow adaptation.

Establishing the dependencies among workflows and services is instrumental in identifying
conflicting change requests that, if enacted simultaneously, would threaten the stability of a
community workflow. Processing a BPEL specification and its supporting documents provides
the data necessary for identifying dependents Thus, dependencies can be gleaned from the
deployed workflow definitions. Service preferences govern workflow behavior in the
environment. The workflow environment changes when services become available or
unavailable, services take errors, or workflows fail. In addition, some conditions may require a
workflow to process information quickly and generate results in the shortest time frame. Other
conditions may require the most accurate workflow results no matter the required processing
time. COI service preferences handle such variations in environmental conditions allowing the
workflow to be automatically adapted to a variety of conditions in addition to accepting manual,
user directed workflow changes. These preferences also establish an order of importance among

 16

services. The order is based on community specific goals and groups services providing similar
functions but varying by performance, precision, or service provider.

The COI preference data form the foundation for decision making. This data is formed with the
understanding that changes to a workflow will be prompted by an overarching community goal.
For example, if the user requires an answer immediately then processing time should be
minimized. In an alternate situation, accuracy or precision may be the driving user goal. In a
precision situation, processing time is of little concern while maximizing analysis and evaluation
of all input conditions will take precedence. Table 3 shows a sample COI Preference designation
for one of the example scenarios used to validate NeWT. The scenario will be discussed in more
detail later in the report. A preference of Speed places priority on querying only the chemical
sensors closest to the building on fire (given a value of 1). QueryChemicalSensors, the
functionally similar service that takes more processing time to query all the chemical sensors on
base and is given a lower preference (value of 2). The next goal identified is Precision. When
this goal is designated, then all the base chemical sensors should be queried. In this way, the COI
maximizes the variable input into the workflow and enables the most accurate results for
chemical plume prediction. Similarly, two services for performing the plume analysis are also
prioritized based on the community goals of speed and precision.

By using this data driven method, a COI may easily establish goals that will drive the automatic
adaptation of their workflows. The adaptations may be defined to occur based on days of the
week, volume of workflow traffic, or preferred business partnerships. For CPCL, the Analysis &
Planning component supports user designation of the currently applicable goal. The identified
design is extendable to incorporate automatec goal setting. In addition, the COI may override the
automated environment modification at any time by manually deploying a change to a
community workflow, thus maximizing community control over the workflow environment.

 17

Table 3. Community Goal-Preferences

W
or

kf
lo
w

Go
al

BP
EL

St

at
em

en
t

Ro
le

Va
lu
e

Se
rv

ic
e

TCA Speed Invoke....
QueryClosestChemSensors SensorReading 1 ChemicalService

TCA Speed Invoke...
QueryChemicalSensors SensorReading 2 ChemicalService

TCA Precision Invoke...
QueryChemicalSensors SensorReading 1 ChemicalService

TCA Precision Invoke...
QueryClosestChemSensors SensorReading 2 ChemicalService

TCA Speed Invoke...
PlumeAnalysis PlumeAnalysis 1 PlumeServiceA

TCA Speed Invoke...
PlumeAnalysisAdvanced PlumeAnalysis 2 PlumeServiceB

TCA Precision Invoke...
PlumeAnalysisAdvanced PlumeAnalysis 1 PlumeServiceB

TCA Precision Invoke...
PlumeAnalysis PlumeAnalysis 2 PlumeServiceA

As workflows are deployed, a goal may be defined for the workflow or the default goal of
priority may be used. The services and other workflows invoked inside the deployed WFD are
identified as dependents. COI UDDI registries are then monitored by the Inspector to identify
services that become available or unavailable. If a service’s availability changes and it is found
in the goal-preferences table, then the referenced workflow is evaluated to see if an adaptive
change is defined for the combination of workflow, workflow goal, and available services.

Plan Rule Formation
A change can be triggered by different events in the environment. The environment taken into
consideration is a COI and the set of workflows within that community, which we refer to as a
Community of Workflows (CWF). A Reconfiguration Directive specifies a variety of conditions
and alterations necessary for the CWF. The Reconfiguration Directive is a 3-tuple consisting of
(Type, Request, ActionOverride), where Type designates whether the reconfiguration applies
directly to a specific workflow, globally to the CWF, or is the result of a change in COI defined
workflow goals (such as speed or precision). Multiple services may offer the same or competing
operation. Thus, the Request tuple element is used to clearly indicate the operation and service
being referenced by a particular Reconfiguration Directive in order to ensure that a newly
inserted operation references the desired service. The Request identifies the correct service via
the service’s WSDL document, which provides information on any new operation specified in
the Reconfiguration Directive.

The Request tuple element has the following embedded structure:

 18

<cmd> <{BPEL-stmt1}> { in | from } <Workflow> {at | with} <BPEL-stmt2><WSDL>

 The cmd is the command insert, delete, or replace.
 BPEL-stmt1 is a valid atomic statement in a BPEL orchestration of a workflow.
 Workflow is a reference to a specific, deployed workflow with one or more executing

instances.
 BPEL-stmt2 is also a valid atomic statement in a BPEL orchestration.
 WSDL provides a WSDL file name. For insert and replace commands, this optional

argument provides the necessary information to correctly identify the service providing
an operation specified in BPEL-stmt1 (for insert commands) or in BPEL-stmt2 (for
replace commands).

When the COI modifies the goal for a workflow or services change state with regards to online
availability, a ProcessWorkflowGoal operation processes the goal-preferences table to determine
what changes are generated by the change. The Analysis & Planning operation
ProcessChangeRequests executes changes by grouping them by workflows to efficiently
implement the changes and resolve conflicting changes. Change request processing prevents
inconsistent changes due to conflicting change requests.

Management of the instances running on reconfigured workflow definitions is handled by the
Coordinator in accordance with the COI rule table shown below in Table 4. The COI rules are
executed in an order such that the first rule in the list that is applicable is used to determine a
change action for managing the instance. Predicate statements used to analyze the change request
and the current state of the workflow instance to determine the best reconfiguration action for the
situation.

Table 4. COI Rules for Change Actions
Predicate 1 Predicate 2 Predicate 3 Result

#

If (ChangeEvent.reason =
COI-driven) &

(isset (actionOverride))
If last(snapshot(i)) follows

tpwf d-id

If ChangeBlock contains
“invoke WSk” with

transactional(WSk) = true Then WFIactionType =
1 TRUE TRUE TRUE actionOverride
2 TRUE TRUE FALSE actionOverride
3 TRUE FALSE TRUE actionOverride
4 TRUE FALSE FALSE actionOverride
5 FALSE TRUE TRUE flush
6 FALSE TRUE FALSE restart
7 FALSE FALSE TRUE migrate
8 FALSE FALSE FALSE migrate

The resulting WFIactionType is determined according to the following reasoning rules.
Emphasis is placed on migrating instances where possible, but not in such a way that an invalid
WFD would be automatically created.

• Rules 1-4: These rules contain instances where Predicate 1 evaluates to true indicating that
the ChangeEvent is user-driven and that the COI has set an actionOverride policy to be used.
The resulting WFIactionType should take the value of actionOverride, which can be any of
the 4 definition actions (flush, abort, restart, or migrate).

 19

• Rule 5: Instances where predicate 2 and 3 evaluate to true indicate that the instance is
executing past the transitional point and that the change block contains transactional services.
The action the Coordinator uses for reconfiguration is to flush the instance, allowing it to
finish any transactional statements which have already begun execution.

• Rule 6: When only predicate 2 evaluates to true the instance is executing beyond the
transitional point, but it does not involve transactional services. The instance can restart to
use the new WFD with no negative consequences from partially executed transactional
statements.

• Rule 7: When predicate 3 evaluates true with predicate 2 evaluating to false the change block
involves transactional service but the instance has not executed within the change block. The
instance can migrate successfully assuming the transactional point occurs before all of the
web service calls associated with the transactional event.

• Rule 8: If all predicates evaluate to false indicating the instance has not executed the change
block and the change block does not involve transactional services. The instance can migrate
successfully.

Meta-data Specification

Definition and instance meta-data specification has been completed in combination with
additional JBI Information Object schema definitions for communication used among CPCL
components. Meta-data definitions for WFD and associated instances are shown in Figure 14 and
Figure 15. Minor changes, including the addition of a <version> element to the WFI-MD have
been included in accordance with the need made apparent from development of the Inspector and
Coordinator.

Figure 14. Definition Metadata (WFD-MD)

Figure 15. Instance Metadata (WFI-MD)

<wfd-md> ::= <wfd-id>> ", " <author> ", " <specification> ", " <wsdls>
<wfd-id> ::= <characters>
<version> ::= <integers> "." <integers>
<author> ::= <username> | <wfi-id>
<username> ::= // string with a valid username denoting who authored the WFD
<specification> ::= // valid XML string representation of a BPEL process
<wsdls> ::= <BPELwsdl> <optionalWSDLs>
<BPELwsdl> ::= // XML string representation of the WSDL file for this BPEL process
<optionalWSDLs> ::= <wsdl> <optionalWSDLs> | ""
<wsdl> ::= // XML string of a service WSDL used in this BPEL process

<wfi-md> ::= <wfi-id> ", " <wfd-id> ", " <trace> ", " <status>
<wfi-id> ::= // instance ID obtained from workflow engine
<wfd-id> ::= <characters>
<version> ::= <integers> "." <integers>
<trace> ::= <BPELstatements> | ""
<BPELstatements> ::= <BPELstatement> <BPELstatements> | ""
<BPELstatement> ::= // valid BPEL element, a member of the main process sequence
<status> ::= "FAULTED" | " STALE" | "CANCELLED" | "COMPLETED"

 20

CPCL Component Schema Definitions

This section contains InfoObject metadata schemas as defined within the JBI for the
communication between the components of the double-loop workflow reconfiguration
processing. The Analysis & Planning component sends a change request to the Coordinator to
cause a new workflow to be deployed such as when a user manually modifies a workflow
specification and places it to be deployed onto the engine. Shown in Figure 16, the wfd-id field
provides a unique reference to the exact workflow definition to be modified. The action field
provides the action to take on the workflow definition. Stmt1 is the statement to find inside the
workflow to replace, the statement to insert before stmt2 or the statement to be deleted. If the
action is deploy or undeploy, stmt1 will be set to null. Stmt2 is null for delete, deploy, and
undeploy actions. If the user has specified an action to take on affected instances, that action is
specified in the actionOverride field. A payload containing workflow artifacts is attached if the
action is deploy.

Figure 16. Analysis & Planning Change Request to Coordinator

A workflow event (Figure 17) is sent from the Inspector to Analysis & Planning to report when a
workflow has been deployed or undeployed. The wfd-id identifies the workflow involved, the
author identifies the COI user, the specification is included along with the wsdl for the
workflow as well as all invoked services. The event identifies if the workflow has been deployed
or undeployed.

<xs:element name="changeRequest">
 <xs:complexType>
 <xs:sequence>
<!-- can be either the name of the wfd, or the word "all" -->
 <xs:element name="wfd-id"/>
<!-- either "replace", "insert", "delete", or "deploy" or "undeploy". -->
 <xs:element name="action"/>
<!-- the bpel statment to either "replace", "insert", or "delete". -->
<!-- if action is "deploy" this is set to the string "none" -->
<!-- if action is "replace", this is the statement to replace stmt1 with -->
<!-- if action is "insert", stmt1 will be inserted immed. after every stmt2 found -->
 <xs:element name="stmt1"/>
<!-- if action is "deploy" or "delete", this is set to the string "none".-->

<xs:element name="stmt2"/>
<!-- used to override the default reconfiguration action, -->
<!-- can be set to the string "none" if not specified by the COI -->
<!-- or if an inspector-driven reconfiguration -->
 <xs:element name="actionOverride"/>
<!-- if action is "deploy", the payload of this message follows the syntax used within -->
<!--Coordinator changeRequest. The payload carries a COI-driven reconfiguration -->
 </xs:sequence>
 </xs:complexType>
</xs:element>

 21

Figure 17. Inspector Workflow Event to Analysis & Planning

When the Inspector component recognizes an event among the services utilized by the COI, an
Inspector service event (Figure 18) is reported to the Analysis & Planning component. The
service element specifies the exact web service which has changed status, the status element
specifies if the service has either come online or gone offline, wsdlLocation and wsdl elements
hold the respective wsdl information for the service which will be used by Analysis & Planning
later to manage reconfiguration.,

Figure 18. Inspector Service Event Sent to Analysis & Planning

After Analysis & Planning has determined the appropriate change request to send to the
Coordinator, the Coordinator component of CPCL begins to enact the reconfiguration. When
suspended instances are managed by the Coordinator, instance actions are sent from the
Coordinator to the Bridge that enacts the appropriate action. To assist in reconfiguration, the
Coordinator requests metadata from the Inspector by sending a wfd-request message shown
below.

<xs:element name="serviceEvent">
<xs:complexType>
 <xs:sequence>
 <xs:element name="service"/>
 <xs:element name="status"/> <!-- either "online" or "offline" -->
 <xs:element name="wsdlLocation"/>
 <xs:element name="wsdl"/>
 </xs:sequence>
</xs:complexType>
</xs:element>

<xs:element name="workflowEvent">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="wfd-id"/>
 <xs:element name="author"/>
 <xs:element name="specification"/>
 <xs:element name="wsdls">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="wsdl"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
<!-- event type can be: deployed, undeployed -->
 <xs:element name="event"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

 22

Figure 19. Coordinator wfd Request for Metadata to the Inspector

The Bridge reports meta-data for each deployed workflow definition (WFD) and each
suspended, stopped, completed, or aborted instance. The format follows that as defined in the
previous section and is collected by the Inspector so that it can be sent back to the Coordinator
when it receives the wfd-request message.

Additionally preliminary specification of the links between the NeWT and CPCL components
has begun during the previous reporting period. For example, a link between the COI UDDI
repository and CPCL components has been defined allowing services to be registered or
removed from the community UDDI. As shown in Figure 20, the serviceName and
wsdlLocation are published to the JBI along with an action of "register" or "unregister".

Figure 20. NeWT Interaction with UDDI Interface Specification

Tasking and Control Interface Loop (TCIL)

TCIL is implemented as an Eclipse plug-in, with new views associated with workflow
management. It extends an existing Eclipse BPEL project which provides a graphical user
interface for workflow development with an underlying BPEL model using the Eclipse Modeling
Framework (www.eclipse.org/bpel/). The Eclipse plug-in sends generated BPEL workflows to
CPCL for deployment on a commercial workflow engine and managed for reconfiguration. TCIL
extends the basic BPEL editor provided by the Eclipse platform by adding several user interface
extensions and the ability to communicate with an extended version of CPCL capable of handing
advanced reconfiguration (Figure 21). Using Eclipse, TCIL provides an extended BPEL editor,
several new wizards associated with automatic reconfiguration, new views capable of showing
reconfiguration options and reporting information, and a modified version of CPCL supporting
advanced dynamism controls. TCIL is divided between three main functional pieces providing a
controller interface, a workflow toolkit, and reporting and feedback mechanisms. Each is
discussed in further detail in the section below.

<xs:element name="wfd-request">
<xs:complexType>

 <xs:sequence>
 <xs:element name="wfd-id"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

<xs:element name="uddiAction">
<xs:complexType>
 <xs:sequence>
 <xs:element name="serviceName"/>
 <xs:element name="wsdlLocation"/>

<xs:element name="action"/> <!-- either "register" or "unregister" -->
 </xs:sequence>
</xs:complexType>
</xs:element>

http://www.eclipse.org/bpel

 23

Figure 21. NeWT UML Diagram

Controller Interface

A Controller Interface is present within TCIL to assist COI members in determining the
necessary functions within the Workflow Toolkit necessary to complete assigned tasks. Common
workflow responsibilities include workflow development, reconfiguration, and execution. The
Control Interface present in TCIL allows isolation between workflow responsibilities to be
inserted if needed by the COI. A COI may require that certain users have access to execute
workflows but not make modifications, requiring an access control mechanism to be inserted
before allowing access to certain functionality within the Workflow Toolkit. Throughout the
remainder of this paper we focus on the functionality TCIL provides to COI users tasked with
workflow development and reconfiguration.

The Workflow Toolkit contains the implementation behind the Controller Interface and forms
the majority of the functionality of TCIL. Pictorially, it is separated in the loop simply to signify
that there are stakeholder designations that may restrict use of the toolkit. The Workflow Toolkit

 24

sends workflow definitions to Analysis & Planning for deployment as well as reconfiguration
information necessary for CPCL to execute properly.

Since TCIL extends an existing workflow editor, workflow developers can use the Workflow
Toolkit like any other workflow editor to sequence the invocations of specific services. The
BPEL editor provided by TCIL extends the basic features found in the
org.eclipse.bpel.ui.BPELEditor package, providing the functionality to deploy, reconfigure, and
invoke the workflow on CPCL, as shown in Figure 21. TCIL facilitates workflow creation using
a graphical editor containing common workflow tasks which can be dragged and placed into an
editor window.

Dynamic change controls are used within TCIL to provide each COI with the ability to influence
how CPCL will handle reconfiguration of the workflow management system. The Workflow
Toolkit provides access to dynamic change controls used to attach a priority to redundant
services within specific workflows and the ability to group those priorities into goals for the
workflow. Dynamic goal change controls exist to assist workflow developers in quickly
switching the goal that a specific workflow is executing under. The NeWT architecture aids
workflow developers in handing these workflow changes by allowing them to decide what
specific change to make to those workflows managed by TCIL. With TCIL in place, CPCL can
determine the appropriate reconfiguration action to take for affected instances.

Reporting and Feedback

Reporting within TCIL is accomplished using an Eclipse Modeling Framework (EMF) model of
the data made available from the combined source of the workflow management system, CPCL,
the COI, and the WS that the COI has deployed on an UDDI registry. The information is stored
in an XML file format adhering to the model, and the built-in EMF viewer within Eclipse allows
COI users to view the reporting information as it changes within the COI.

TCIL generates reports for each COI. The reporting viewer, shown in Figure 22, allows COI
users to traverse information including: metadata about deployed workflow definitions, status
information of running instances, information about the WS used by the COI, preferences the
COI has related to reconfiguration, and information related to the results of previous
reconfigurations. Details about specific reporting items are shown via a properties viewer
provided by Eclipse.

 25

Figure 22. TCIL report viewer

The EMF model used by TCIL supports the ability for a COI to create and register event
adapters that wait for changes to the reporting model. When changes occur COI code can execute
to determine if the change is significant enough to require COI involvement, possibly sending
messages to workflow developers via alert dialog boxes or other COI-specific messaging
platforms. Example of significant reporting events can include WS failures, the registration of a
new WS with the COI UDDI, or the creation of new workflow definitions. The feedback
mechanism allows TCIL to report information to the COI as soon as it is made available for
analysis.

Workflow Controls

Dynamic Goal Controls

Workflow reconfiguration lets a COI adapt to the needs of stakeholders quickly and efficiently.
TCIL builds upon a goal-preference structure found within CPCL, giving workflow developers
the ability to embed reconfiguration directives in workflows without modifying their original
BPEL syntax. The remainder of this section describes the specific features of TCIL provides that
are related to dynamic goal controls.

COI users can add specific goals to workflows by selecting individual services in the workflow
editor and opening the goal preference wizard. The wizard implements features of the
GoalPreferenceWizard class (Figure 21), providing a mechanism for the workflow developer to
define new goal and preferences for the workflow. The wizard, shown in Figure 23, allows the
COI to define the name of a goal and the alternate service to use. Other information such as the
workflow id, operation, and role are provided by TCIL based on the selected workflow task.

 26

Figure 23. Goal preference entry dialog

The goal preferences created by workflow developers are sent to CPCL to be stored and used in
processing goal changes. A summary view of all current workflow goal preferences is made
available inside the Workflow Editor as shown in Figure 24. The view lists of all current
workflow goals and the service preferences that have been defined.

Figure 24. Goal preference table for example workflow

The ability to add goals and preferences to workflow definitions does not provide a COI with
enough functionality to dynamically change workflow goals. The NeWT toolkit will continue to
execute the default workflow definition created by the workflow developer until the goal for that
workflow is changed. The "GoalSelectionWizard" of TCIL (Figure 21) enables workflow
developers to quickly and effortlessly switch the goal a workflow is executing under. The

 27

wizard, shown in Figure 25, gives the COI easy access to change the goal for workflows without
worrying about managing the reconfiguration that takes place inside of CPCL.

Figure 25. Workflow goal selection dialog box

Reconfiguration of the workflow is performed via the interface shared between TCIL and CPCL.
The Analysis & Planning component of CPCL is extended to monitor for goal change requests
from TCIL as shown in Figure 21. The core functionality contained within CPCL is used to
manage changes in service availability, but not goal changes. The extensions made by NeWT
examine all the services used by the workflow, matching the goal preferences defined and
replacing service invocations. After generating the new workflow definition, a number of
instances may require reconfiguration to take advantage of the change. CPCL manages the
reconfiguration of affected workflow instances dynamically.

Results of the reconfiguration are updated in the Reporting component of TCIL, as shown in
Figure 26. Reporting allows the COI to review which preferences were used to generate the new
workflow definition and the goal that triggered the change.

 28

Figure 26. Report for goal change reconfiguration

Dynamic Workflow Change Controls

TCIL provides automatic reconfiguration, as described in the previous two sections, as well as
the ability to perform manual reconfiguration. Manual reconfiguration can be triggered by a
variety of COI events. For example, a COI may decide to modify an existing workflow due to
changing business practices (such as using an upgraded service) or due to WS-specific reasons
(such as a COI choosing to no longer utilize a particular service). TCIL accesses functionality
contained within CPCL to assist workflow developers in managing manual reconfiguration.
Specifically, manual reconfiguration requires exposing certain CPCL functions to dictate the
reconfiguration directly via the Workflow Toolkit.

After a workflow developer manually changes a workflow, TCIL asks the user to choose one of
the reconfiguration directives used for running instances of the workflow that are affected by
reconfiguration. Figure 27 shows the wizard that is displayed when directed changes are made.
CPCL’s reconfiguration strategy places emphasis on migrating instances, which may not always
be the best choice, requiring COI intervention at this level. Therefore, TCIL presents the option
to override the migration default reconfiguration directive using the wizard where an
actionOverride message is coupled with the chosen reconfiguration directive and delivered to
Analysis & Planning.

 29

Figure 27. Workflow reconfiguration options

When the choice of reconfiguration directive is made within TCIL, CPCL manages the
deployment of the new workflow and the necessary instance migrations. After enacting the
reconfiguration directive, reporting within TCIL is updated to contain the reconfiguration
information and instances affected by the change, as shown in Figure 28. Trace information is
provided as the workflows continue to execute, which allows the COI to inspect instances that
warrant investigation at a later point in time.

Figure 28. Workflow reconfiguration results

 30

Jython Fuselet Wrapper

A Web Service wrapper that encapsulates Jython-coded Fuselets has been developed to assist in
the development of test cases for use in NeWT. Previous research has shown that the
functionality within Jython Fuselets can be completely re-written to run within a web service
architecture. JyWAR assists in the migration of existing Jython Fuselets that are developed, so
that they may be included easily within workflows. A set of requirements for the toolkit included
the following functionality.

• Toolkit should be an Eclipse-based plug-in capable of interfacing with an existing Jython

FDE and reading existing Fuselet specifications.
• The toolkit should be able to automatically create and deploy a packaged file that contains

the necessary files to call a wrapped Jython Fuselet in the JBI.
• Fuselet meta-data should be made available via the web service interface or WSDL

document, so that this information can be queried.
• The Wrapper should be able to handle calls to both stateful and stateless Fuselets. Operations

to invoke stateful Fuselets should block, operations to invoke stateless Fuselets should be
non-blocking.

• Wrapped Fuselets should still be able to communicate with a running JBI.

This JyWAR plug-in reads an existing Jython Fuselet specification, automatically creates an
appropriate wrapper to the Fuselet, deploys the packaged file to an application server, and
registers the service in an UDDI registry. The wrapper recognizes JBI subscription requests and
modifies them to JBI queries for the invocation of Web Services. The wrapper was developed to
support the Fuselet specification language provided to us by the Air Force.

A use case diagram is shown in Figure 29 and illustrates the interaction among the Web Service
requestor, the wrapper, the Fuselet, and the JBI. A user or workflow will make a request to the
wrapping Web Service, the application server receives the request and invokes the appropriate
Web Service. The Fuselet Web Service will parse the Fuselet metadata and runs the Jython
Fuselet. A JBI connection is utilized to publish to and query from the JBI.

 31

User Application Server

Invoke Web Service

Send Web Service
Response Execute Web Service

Execute Fuselet

Parse Fuselet
Metadata

«uses»

«uses»

Communicate to JBI

«uses»

Subscribe

JBI

Query

Publish

«extends»

«extends»

«extends»

Figure 29. Fuselet Wrapper Use Case Diagram

When executed, the plug-in provides an interactive step by step process, as shown in Figure 30,
for creating a Web services. When launched from within Eclipse, the Fuselet developer can
select an existing Fuselet in the workspace allowing JyWAR to fill in necessary deployment
parameters automatically. Preferences are saved so that multiple Fuselets can be created quickly.

 32

Figure 30. Automated Fuselet to Web service Wrapping

Example Jython Fuselets have been successfully wrapped using the plug-in deployed on a Java
Sun Application Server (Glassfish J2EE). These include example Jython Fuselets provided by
the Air Force as well as in-house Fuselets developed to test the plug-in and NeWT (see “Air
Base Battlefield Scenario” section later for more details about these Jython Fuselets).

Example Scenarios

Terrorist Chemical Attack Scenario

An example web service scenario simulating a Terrorist Chemical Attack (TCA) and the release
of chemicals into the air due to the attack has been created for testing in conjunction with the
development of CPCL. In the example, chemical sensor readings are simulated and a chemical
plume model is created based on the readings and live weather conditions. The architecture for
this scenario is composed of Web Services, a BPEL workflow, a web portal, and the JBI. The
Web Services are invoked from a BPEL workflow and each publishes and queries the JBI for
information. This simulation utilizes weather data downloaded from the National Oceanic &
Atmospheric Administration (NOAA). TCA enables analysis of different workflow goal types.

When a fire occurs, the immediate goal of the emergency response team will be to get feedback
as quickly as possible. Plume contents along with the general plume location and direction is
sufficient to allow emergency response to begin. Shortly thereafter, more detailed information
will be required especially as evacuations are evaluated. Further, as emergency response

 33

personnel enter the field, their chemical sensors may be included in the plume modeling data to
enable the most precise prediction that is possible. Redundant services can be defined for
querying chemical sensors directly surrounding the fire, querying sensors in a wider area, and
querying sensors on emergency personnel. Querying fewer sensors means a faster response time.
Different plume modeling services may be offered from different vendors. These models may be
chosen based on priority, availability, or weather conditions.

The workflow can utilize dynamism by querying a small set of sensors to generate an initial
plume estimate. Once an emergency response has begun, a dynamic change to the workflow can
be performed to query all area chemical sensors and generate a more detailed prediction of the
chemical plume. Occasionally, weather data for the desired weather station is unavailable via
NOAA. When this occurs, the user can enact a workflow change to utilize a different weather
station. Figure 31 illustrates the processing flow for the TCA scenario. Dotted lines designate
redundant services that have been defined for replacing services in the normal flow as needed.

 34

Figure 31. TCA process flow

The simulation utilizes a web portal to establish simulation parameters. The portal provides an
interface for defining the simulation parameters such as the simulation area radius, chemicals,
buildings, chemical stores in the buildings, and area chemical sensors. In Figure 32, three
chemicals are defined for an example simulation. The portal includes a map of the defined
chemical stores and buildings defined during setup as shown in greater detail in Figure 33.

 35

Figure 32. Terrorist Chemical Attack - Simulation Setup

Figure 33. Terrorist Chemical Attack - Simulation Map

Currently documentation of the exact installation and setup for the ChemSimWS simulation is
being developed for easy transition to the Air Force at the end of the research effort. The
simulation’s Web services are deployed on a J2EE server. The portal calls the services to define
the initial parameters and a workflow invokes the services to execute the actual simulation.
Redundant service operations are available to provide different weather station data.

 36

Figure 34 illustrates the two operations available to retrieve weather information as shown in the
J2EE server’s testing interface. A rapid simulation is available for making a quick estimate of
plume direction. More detailed analysis can be performed by a redundant plume analysis service.
These operations are being used in the dynamism testing with the CPCL system.

Figure 34. Terrorist Chemical Attack - Simulation Web Service Test Interface

Air Base Battlefield Scenario

The second scenario investigated, an Air Base Battlefield (ABB) scenario, examines services
involved with the working of an Air Force base. Fuselets have been generated in Jython which
have been incorporated into a workflow that manages the exchange between an aircraft tower,
ground support crew, and aircraft crew at an airport. The "AirportTakeoff" workflow shown in
Figure 35 contains invocations to WS that implement common tasks performed within airports.

 37

Figure 35. AirportTakeoff Workflow Definition

The services used by the Airport Attack Center COI route airplanes on the ground through the
necessary takeoff procedures before an airplane leaves the runway of an airport. The services are
sequenced by the COI starting with a Fuselet responsible for removing airplanes from a storage
location at a hanger. Fuselet services are used to route planes through loading and fueling
stations at the airport, and then send the airplane to the appropriate runway for takeoff. The
specific services are:

• Hanger: stores and taxis airplanes within the airport.
• Tower: represents the airport tower used to route airplanes on the ground.
• LoadingStation: loads passengers and other cargo onto the airplane.
• FuelingStation: fuels the airplane prior to takeoff.
• Runway1: schedules airplanes to leave via the primary runway.

 38

Normal operations of the AirportTakeoff workflow involve invoking the appropriate Fuselet
allowing necessary messages to be transferred to the JBI. Redundant services have been created
for each of the Fuselets used in the workflow. Under attack, the air base may experience a
variety of changes. One or more runways may become unavailable, all operations on a runway
may be suspended until the runway is cleared which may include delaying and/or re-routing
landings, and when operations resume, aircraft landings may be re-ordered based on priority
rather than pre-attack schedule.

Redundant Fuselets for each of the services used within the airport have been created and tested
showing how CPCL can automatically migrate from a non-functioning workflow to a backup
workflow utilizing the appropriate services. A text-based toolkit has also been developed which
subscribes to the JBI and outputs console messages showing the progression of airplanes as they
move throughout the airport and updating the current status of airport services such as available
fuel.

Conclusion

Given the task of workflow inspection and feedback NeWT has been designed and tested to
provide a variety of dynamic reconfiguration responses to events surrounding COI WS. NeWT is
partitioned into three distinct loops providing workflow creation, automated reconfiguration, and
execution management. Partitioning NeWT into TCIL, CPCL, and Oracle provides NeWT with
principles of software composition, such as loose coupling of components, plug and play, and
dynamic reconfiguration. The combining of WS discovery, task allocation, and automated task
reconfiguration into a single, malleable architecture yields a core notion of composition that can
be extended to branching and embedded workflows for WS. The example scenarios developed
have provided a test bed to examine NeWT's effectiveness in responding to dynamic workflow
events and have proven successful in managing the dynamic services used throughout TCA and
the ABB example situations.

References

[1] T. Heinis, C. Pautasso, and G. Alonso, "Design and Evaluation of an Autonomic

Workflow Engine," presented at International Conference on Autonomic Computing,
2005.

[2] P. Vieira and A. Rito-Silva, "Adaptive Workflow Management in WorkSco," presented
at International Workshop on Database and Expert Systems Applications, 2005.

[3] P. Dias, P. Vieira, and A. Rito-Silva, "Dynamic Evolution in Workflow Management
Systems," presented at 14th International Workshop on Database and Expert Systems
Applications (DEXA '03), 2003.

[4] T. A. S. C. Vieira, M. A. Casanova, and L. G. Ferrao, "An Ontology-Driven Architecture
for Flexible Workflow Execution," presented at WebMedia & LA-Web Joint Conference,
2004.

 39

[5] L. A. G. d. Costa, P. F. Pires, and M. Mattosol, "WebComposer: a Tool for the
Composition and Execution of Web Service-based Workflows," presented at WebMedia
& LA-Web Joint Conference, 2004.

[6] M. Adams, A. H. M. t. Hofstede, D. Edmond, and W. M. P. v. d. Aalst, "Implementing
Dynamic Flexibility in Workflows using Worklets," BPM Center Report,
BPMCenter.org, BPM-06-06 2006.

[7] J. J. Halliday, S. K. Shrivastava, and S. M. Wheater, "Flexible Workflow Management in
the OPENflow System," presented at IEEE International Enterprise Distributed Object
Computing Conference, 2001.

[8] S. W. Sadiq, "Handling Dynamic Schema Change in Process Models," presented at
Australasian Database Conference, 2000.

